Call for Paper

General areas of interest to ICCDA include but are not limited to:

Mathematical, probabilistic and statistical models and theories
Machine learning theories, models and systems
Knowledge discovery theories, models and systems
Manifold and metric learning
Deep learning
Scalable analysis and learning
Non-iidness learning
Heterogeneous data/information integration
Data pre-processing, sampling and reduction
Dimensionality reduction
Feature selection, transformation and construction
Large scale optimization
High performance computing for data analytics
Architecture, management and process for data science

Data analytics, machine learning and knowledge discovery
Learning for streaming data
Learning for structured and relational data
Latent semantics and insight learning
Mining multi-source and mixed-source information
Mixed-type and structure data analytics
Cross-media data analytics
Big data visualization, modeling and analytics
Multimedia/stream/text/visual analytics
Relation, coupling, link and graph mining
Personalization analytics and learning
Web/online/social/network mining and learning
Structure/group/community/network mining
Cloud computing and service data analysis

Storage, retrieval and search
Data warehouses, cloud architectures
Large-scale databases
Information and knowledge retrieval, and semantic search
Web/social/databases query and search
Personalized search and recommendation
Human-machine interaction and interfaces
Crowdsourcing and collective intelligence